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Abstract. We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular
Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The
regions of parameters where the macroscopic quantum localization of the relative atomic population occurs
are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely,
coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscil-
lations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances
are calculated for population of atomic and molecular condensates and the possibility of quadrature squeez-
ing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel
coupling between two AMBEC leads to correlations in quantum statistics.

PACS. 03.75.-b Matter waves – 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates –
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices
and topological excitations – 05.30.Jp Boson systems

1 Introduction

In the last few years a sharp increase of interest in
the dynamics of Bose-Einstein condensates (BEC) has
emerged as a consequence of experimental achievements
that proved it possible to create a BEC trapped by
magnetic fields [1–3]. This initially concerned mainly the
atomic BECs. More recently, it was found that there exists
the possibility to create atomic-molecular Bose-Einstein
condensates (AMBEC). It was shown theoretically [4–6]
that an atomic condensate can be converted coherently
to a condensate of diatomic molecules. Recently some ex-
perimental data was obtained showing the possibility to
create mixing atoms and molecules in condensate [8]. Co-
herent coupling between atoms and molecules in BEC and
oscillations between atomic and molecular states has been
observed recently in [9]. Two different physical approaches
were suggested to create Bose-Einstein condensate con-
sisting of resonantly coupled atoms and molecules. In the
first a resonance coupling could be achieved by applica-
tion of external magnetic field with strength tuned close
to Feshbach resonance [4,5]. Also, it was suggested to use
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direct photoassosiation process, in which the atomic con-
densate is coupled to the diatomic molecular condensate
through two-photon Raman transition [6,8]. The equa-
tions describing both processes have the same mathemati-
cal structure and in addition have the direct analogue with
the second harmonic generation equations in nonlinear op-
tics. AMBEC formation, is believed, could be the way for
development of a molecular laser and for coherent stimu-
lation of chemical reactions [6], so-called superchemistry.

Several interesting effects have been predicted, using
formal analogue with the second harmonic generation,
for the dynamics of the mixed AMBEC, among them
Josephson-like oscillations between atomic and molecular
condensates [4–6] and the formation of stable soliton-like
trapped states [6,10]. Also different physical mechanisms
were suggested to convert most effectively the atomic con-
densate to molecular one using two-color Raman pho-
toassociation scheme [12], or combination of stimulated
Raman transition with time-dependent magnetic field
near Feshbach resonance [13]. The properties of quantum
AMBEC is another related topic attracting much interest.
In [14] the optical parametric oscillator analogue for atom-
molecular condensate, or the photodissociation process of
initially molecular Bose condensate to atomic one have
been investigated and it was shown that the atomic con-
densate appears in squeezed state. Dynamical quantum
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effects in AMBEC have been studied in [15,16]. Some in-
teresting effects have been found which do not have analo-
gies in semiclassical treatment. Also, decoherence effects
in AMBEC induced by noncondenced atoms or by the
mutual correlations have been considered [17–19].

On the other hand, the existence of macroscopic quan-
tum phase difference in processes connected with the
atomic waves has been shown to exist. This effect is ob-
served in a system consisting of two tunnel-coupled atomic
Bose-Einstein condensates [20–22,27,29–31,33]. The trap
potential has the double-well structure. This is in direct
analogy to the ac Josephson effect [23] and the periodic ex-
change of power and switching of electromagnetic waves
between cores in nonlinear optical couplers [24]. In par-
ticular, there is a direct analogy for tunneling phenomena
between two alongated Bose-Einstein condensates and two
tunnel-coupled single mode optical fibers. In this optical
analogy the role of chemical potential is played by the
propagation constant, and the nonlinear interaction be-
tween atoms is the analog of the Kerr nonlinearity in op-
tical media. The tunnel-coupling occurs from the overlaps
of the electromagnetic fields outside of dielectric cylinders
(fibers) [25,26] and it exactly corresponds to the tunnel
coupling between two Bose-Einstein condensates, spatially
separated in a double well trap, due to the overlaps of the
wavefunctions.

A natural step in the investigation of nonlinearly cou-
pled BECs is the consideration of tunneling phenomena in
interacting atomic-molecular condensates. In this respect,
it should be noted that in such situation we couple two dif-
ferent nonlinear oscillatory processes. As will be shown in
the present paper, this entails new and complex dynamical
regimes. We will consider problem in two aspects. First we
analyze the problem in four modes approximation. In spite
the well known difficulties which meets such approxima-
tion for present experimental status, it may be useful for
investigation of the threshold phenomena in atomic con-
densate with taking into account the small molecular sub-
system. This model is interesting also for nonlinear optics
of quadratic nonlinear couplers where only few numerical
results are known for the switching and power exchange
phenomena [32]. To go beyond of the four modes model
we will consider the influence of quantum fluctuations to
dynamics of coupled AMBEC’s and its quantum statisti-
cal properties. It is important and new issue, which needs
a consideration.

The outline of the paper is as follows: in Section 2 we
formulate the problem and introduce main equations; in
Section 3, the classical Gross-Pitaevskii equations will be
solved numerically in the four-mode approximation, and
different dynamical regions will be characterized; in Sec-
tion 4 we analyze the role of quantum fluctuations using
P-positive phase space method and stochastic simulations
to study the quantum mean dynamics and quantum statis-
tics of the coupled AMBEC. Section 5 is devoted to con-
clusions.

2 Formulation of problem

The second-quantized Hamiltonian Ĥ for AMBEC in a
trap can be written in the following form [4]

Ĥ =
∫
d�rψ̂+

a (�r)
[
− �

2

2M
∇2 + V (�r)

]
ψ̂a(�r)

+
λ′a
2

∫
d�rψ̂+

a (�r)ψ̂+
a (�r)ψ̂a(�r)ψ̂a(�r)

+
∫
d�rψ̂+

m(�r)
[
− �

2

4M
∇2 + V (�r)

]
ψ̂m(�r)

+ λ′
∫
d�r

[
ψ̂2

a(�r)ψ̂+
m(�r) + ψ̂+2

a (�r)ψ̂m(�r)
]
, (1)

where ψ̂a and ψ̂m are the field operators of atoms and
quasibound molecules, respectively. V (�r) represents the
trapping potential, λ′a = 4πa�2/(2M) with M being
the atomic mass and a the scattering length, λ′ denotes the
coupling constant of atom-molecule interaction, and de-
tuning is assumed to be zero. � is the Planck constant. The
atom-molecule and molecule-molecule interactions are not
included as their parameters in the low-energy regime are
unknown.

One measurement for λ′a has recently been performed
and agreed with value λ′a ≈ −6.9 × 10−51 Jm3 [8]. For χ
we have λ′ ≈ 7.4 × 10−41 Jm3. By Feshbach resonances
one can increase atom-atom interactions and so neglect
the molecular-molecular interactions.

Note that the Hamiltonian is an effective Hamilto-
nian. The replacement of the interatomic potential by a
δ-function pseudopotential leads to the ultraviolet diver-
gences of the observable quantities. So it is necessary to
use ultraviolet momentum cutoff with km ∼ 1/a, where a
is the longest scattering length (typically km ∼ 1 nm−1)
(see [6] for more details). If we use the bare values λ′a, λ

′ it
is required to introduce the momentum cutoff km. Return-
ing to the renormalized values of λ′a, λ′ we obtain the mean
field equations of the effective field theory with complex
coefficients of linear and nonlinear terms in GP equations
(see the discussion in the recent review [7]). This effect
leads to the damped oscillations and as the result to the
shift in the threshold between the macroscopic quantum
tunneling and the Josephson oscillations regimes. This
problem requires the separate consideration.

In the mean field approximation one neglects the
quantum and thermal fluctuations and replaces in the
Heisenberg equations of motion the operators ψ̂a and
ψ̂m by their mean values Ψa and Ψm. Then the Gross-
Pitaevskii equations for the AMBEC in the trap have the
form [6]

i�
∂Ψa

∂t
= − �

2

2M
∆Ψa + V (�r)Ψa + 2λ′Ψ∗

aΨm + λ′a|Ψa|2Ψm,

(2)

i�
∂Ψm

∂t
= − �

2

4M
∆Ψm + V (�r)Ψm + λ′Ψ2

a . (3)
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The generalized number of atoms is conserved

N =
∫
dV (|Ψa|2 + 2|Ψm|2), (4)

with each molecule counting as two atoms.
Let us consider a well separated AMBEC in double-

well trap. Then the condensates wavefunctions overlap
only in the region of exponentially small tails and the tun-
nel coupling is small. In this situation, the solution can be
presented in the form

Ψa = a1(t)f1(�r) + a2(t)f2(�r),
Ψm = b1(t)c1(�r) + b2(t)c2(�r). (5)

Here, we assume that dynamics of weakly coupled ANBEC
can be described in four-mode approximation, and a1, b1
and a2, b2 describe time dependence of atomic and molec-
ular condensate in different wells of the trap. The modal
functions f1, f2, c1, c2 are defined as a ground state of a
single isolated potential well [27]

Ψa = e−iµtf(�r), Ψm = e−2iµtc(�r), (6)

and the numerical solution of the corresponding eigenvalue
problem [10]

�µf = − �
2

2m
∆f + V (�r)f + 2λ′f∗c+ λ′a|f2|f,

2�µc = − �
2

4m
∆c+ V (�r)c+ λ′f2. (7)

Another way is to use the variational approach with the
Gaussian anzatz for the mode functions fi, ci [11]. While
the algebraic constraints on the parameters are compli-
cated, they can be solved numerically. If the modes are
not significantly modified by the mean field effects then
the harmonic oscillator wave functions can be used

f1,2 =
(

1
2π∆1

)3/4

e−(x2+y2+z2)/(4∆1),

c1,2 =
(

1
2π∆2

)3/4

e−(x2+y2+z2)/(4∆2),

where ∆1 = �/2Mω1, and ∆2 = �/4Mω2. ω1, ω2 are fre-
quencies of small oscillations in the trap for atomic and
molecular condensates respectively.

Substituting this expansion into (2,3) and multiply-
ing both sides on fi(�r) or ci(�r) and integrating over �r we
obtain the system of equations for the coupled modes

i�
da1

dt
= Wa1 +Ka2 + g|a1|2a1 + χa∗1b1 (8)

i�
da2

dt
= Wa2 +Ka1 + g|a2|2a2 + χa∗2b2 (9)

i�
db1
dt

= wb1 + kb2 +
χ

2
a2
1 (10)

i�
db2
dt

= wb2 + kb1 +
χ

2
a2
2 (11)

where

W = − �
2

2M

∫
f∗
1∆f1d�r +

∫
V1| f1 |2d�r,

w = − �
2

4M

∫
c∗1∆c1d�r +

∫
V | c1 |2d�r,

K = − i�2

2M

∫
f∗
1∆f2d�r +

∫
V f∗

1 f2d�r,

k = − i�2

4M

∫
c∗1∆c2d�r +

∫
V c∗1c2d�r,

χ = 2λ′
∫
f∗
1

2c1d�r, g = λ′a

∫
| f1 |4d�r. (12)

Values of the parameters in the model are K/� = 1 kHz,
χ/� = 20 Hz, g/� is changed within (0−1) Hz.

Here, we should note that, as was shown in [18,19] in
a typical parameters range one cannot use a few mode ap-
proximation to describe AMBEC. The four modes model
that we will consider in principle is applicable at the very
low temperatures or for small size systems, when we can
detune from the excited modes [18]. The modern experi-
ment requires the taking into account the multimode char-
acter of the problem. The latter predict the damping of
oscillations between molecular and atomic components of
the condensate. The position of the first oscillation is pre-
dicted by the mean field correctly. As we will interested
by the macroscopic quantum self trapping (nonoscillating
regimes) thresholds etc., our consideration in this part can
be interesting for planning experiments too.

Before proceeding with the system (8–11) let us de-
scribe shortly the known results for the dynamics of
AMBEC in a single well trap. In this case one neglects
the coupling terms (K = k = 0), and the system (8–11)
becomes

i�
da1

dt
= Wa1 + g|a1|2a1 + χa∗1b1, (13)

i�
db1
dt

= wb1 +
χ

2
a2
1. (14)

If the interatomic interaction is negligible, g = 0, then
equations (13–14) coincide with the well known from non-
linear optics equations of second harmonic generation, and
they have exact solution, which in terms of AMBEC de-
scribes the full conversion of atomic condensate to molec-
ular one. The inclusion of the interatomic interaction
leads [4,6] to the appearance of oscillation in the dy-
namics of population of atomic and molecular conden-
sate, because of tunneling current between them. When
the strength of interatomic nonlinear interaction becomes
larger than some critical value the self-maintained popu-
lation imbalance appears: macroscopic quantum self trap-
ping effect in AMBEC [17].

There is another limiting case which was investigated
in the literature, when one neglects the atom-molecular in-
teraction (χ = κ = 0) but puts the system to a double well
trap. In this case we have the atomic Bose-Einstein con-
densate in double well trap [28–30] and equations (8–11)
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become,

i�
da1

dt
= Wa1 +Ka2 + g|a1|2a1 (15)

i�
da2

dt
= Wa2 +Ka1 + g|a2|2a2. (16)

The system (15, 16) also show the appearance of oscil-
lating current between coupled condensates below critical
value of nonlinearity coefficient g, and macroscopic quan-
tum self trapping effect when it is above critical value.

So, from a general point of view, it is possible to out-
line, that the system (8–11) describing weekly coupled
AMBECs, consists of two subsystems both with nonlin-
ear oscillations and macroscopic quantum tunneling, and
one may expect that the dynamics generated by coupling
such systems exhibits complicated behaviour.

3 Analysis of the modes equations

In this section the results of numerical simulation of sys-
tem (8–11) for different values of control parameters are
presented and their physical meaning is discussed. Let us
introduce the following dimensionless variable τ = tK/�.
Then the problem of AMBEC’s in a double-well time de-
pendent traps can be described by the following four mode
model — the extension of two-mode models considered for
AMBEC condensate in single trap [4,5]

i
da1

dτ
= E1a1 + a2 + Λ|a1|2a1 + χ1a

∗
1b1, (17)

i
da2

dτ
= E1a2 + a1 + Λ|a2|2a2 + χ1a

∗
2b2 (18)

i
db1
dτ

= E2b1 + εb2 +
χ1

2
a2
1, (19)

i
db2
dτ

= E2b2 + εb1 +
χ1

2
a2
2 (20)

where E1 = W/K,E2 = w/K, ε = k/K,Λ = g/K, χ1 =
χ/K.

Uniform amplitudes are ai =
√
Ni,a exp(iθi,a), bi =√

Ni,m exp(iθi,m), i = 1, 2 determines the well in the
trap. It is interesting to investigate the dynamics of the
populations imbalance Pa(t) = (N1,a − N2,a), Pm(t) =
(N1,m − N2,m). We can expect the localization of the
populations in the separate modes in dependence of the
value of nonlinearity parameters. In all calculations in this
section the following initial conditions have been used:
a1 = 100, a2 = a3 = a4 = 0.

Let us start the investigation for the case when we ne-
glect the nonlinear interatomic interaction and coupling of
molecular condensates in different traps. Molecular cou-
pling should be much smaller than atomic coupling, be-
cause it depends on tunneling rates, and obviously the
tunneling rates of molecules are much smaller than for
atoms. The interatomic interaction may be tuned close to
zero by external fields, so the investigation of this limiting
case is also of physical interest. In Figure 1 we show the
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Fig. 1. The atom condensate (thin line) and molecular conden-
sate (thick line) intermodal populations imbalance Pa and Pm

as a function of normalized time τ for E1 = E2 = Λ = ε = 0,
χ1 = 0.02.

result of simulations. From these results one can deduce
that in this case the atomic condensate, after some tran-
sient oscillations, fully converted to molecular one, which
distributed in both molecular modes, and asymptotically,
there is only molecular condensate. Then we have solved
the system (17–20) with nonzero values of g and ε. In Fig-
ure 2a the example of simulation is presented when we
include the small coupling of the molecular modes, which
should exist in real a system. This coupling, even it is
quite small, leads to the oscillations of population in all
modes and the frequency of oscillations is proportional
to the value of molecular modes coupling coefficient. So,
there is the instability of solution presented in Figure 1,
for small values of the molecular intermodal coupling ε.
We have checked also (Fig. 2b), that the same type of in-
stability appear when we take into account the nonlinear
interatomic interaction. This also leads to oscillations in
all modes of weakly coupled AMBEC, and the dynamics
of oscillations looks quite irregular.

We now proceed with the solution of equations (17–
20) with all terms included. The aim of this study was
to check in details the influence of the strength of inter-
atomic interaction g to the dynamics of AMBEC. In Fig-
ures 3a–3d we show the dynamics of atom condensate Pa

and molecular condensate Pm population imbalance as
a function normalized time τ , for the increasing values
of g. From these figures we could note that nonlinear-
ity effectively dump the conversion of atomic condensate
to molecular one, and this fact is known also from two
mode model of AMBEC, where the MQST effect exists.
For small values of g atomic condensate could be con-
verted to molecular one, but period of oscillations and its
amplitude become variable. With increasing of the value
of g, the conversation is fully deteriorated. Also, just as in
the case of two weakly coupled atom condensates, there
are localization phenomena of the atomic condensate in
one of the traps. But, in the case of two weakly coupled
AMBECs, there are no clear separation of two dynamical
regimes, oscillations and localization, but instead one may
observe the region in phase-space, in which oscillations dis-
appear and localization appears through some irregular,
chaotic oscillations. This phenomena could be explained
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Fig. 2. (a) The atom condensate (thin line) and molecular
condensate (thick line) intermodal populations imbalance Pa

and Pm as a function of normalized time τ for E1 = E2 = Λ =
0, χ1 = 0.02, ε = 0.0001; (b) for E1 = E2 = 0, χ1 = 0.02,
ε = 0, Λ = 0.00001.

qualitatively as a result of interaction of atomic and molec-
ular subsystems of the condensate.

Let us consider the limiting case, when E2bi ≈ −α1ai
2.

Then we have the system of equations,

ia1t = (E1 − 2α2/E2)|a1|2a1 +Ka2,

ia2t = (E1 − 2α2/E2)|a2|2a2 +Ka1. (21)

Introducing variables a1 =
√
n1 exp(iθ1), a2 =√

n2 exp(iθ2) we obtain the system of equations

Ψt = U1nz − 2K√
1 − z2

cos(Ψ),

zt = 2K
√

1 − z2 sin(Ψ), (22)

where Ψ = θ2 − θ1, z = (n1 − n2)/n, n = n1 + n2 =
const, U1 = E1 − 2α2/E2. This is the system describ-
ing two weekly coupled Bose-Einstein condensates, and
its dynamics both in classic and quantum cases is inves-
tigated in [28–30]. The Hamiltonian for this system is
H = Λz2/2 +

√
1 − z2 cos(Ψ). Let us introduce the pa-

rameter Λ = U1n . When Λ = 5, Ψ(0) = 0, z(0) = 0.3
we should have the oscillations with 〈z〉 = 0 — so-
called macroscopic quantum tunneling regime. When Λ =
10, z(0) = 0.6, Ψ(0) = 0 we should observe oscillations
with the mean 〈z〉 �= 0 — so-called self-trapping regime.
In derivation of equations (21) we have eliminated adi-
abatically the molecular subsystem, because the rate of

(a)
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(c)
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Fig. 3. (a) The atom condensate (thin line) and molecular
condensate (thick line) intermodal populations imbalance Pa

and Pm as a function of normalized time τ for E1 = E2 = 0,
χ1 = 0.02, ε = 0.0001, Λ = 0.0001; (b) for E1 = E2 = 0,
χ1 = 0.02, ε = 0.0001, Λ = 0.000375; (c) for E1 = E2 = 0,
χ1 = 0.02, ε = 0.0001, Λ = 0.0004; (d) for E1 = E2 = 0,
χ1 = 0.02, ε = 0.0001, Λ = 0.0005.
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Fig. 4. (a) The atom condensate (thin line) and molecular condensate (thick line) intermodal populations imbalance Pa and Pm

as a function of normilized time τ for E2 − E1 = 10, χ1 = 0.02, ε = 0.001, Λ = 0.00001; (b) for E2 − E1 = 10, χ1 = 0.02,
ε = 0.001, Λ = 0.00055; (c) for E2 − E1 = 10, χ1 = 0.02, ε = 0.001, Λ = 0.00075; (d) for E2 − E1 = 10, χ1 = 0.02, ε = 0.001,
Λ = 0.0009; (e) the phase portrait for atom condensate intermodal populations imbalance for the values of parameters the same
as in (a); (f) the phase portrait for atom condensate intermodal populations imbalance for the values of parameters the same
as in (c).

conversation is small in this case, as is the case in the anal-
ogous theory of second harmonic generation in nonlinear
optics. It seems that the influence of the molecular conden-
sate to dynamics of atomic one should be negligible. We
have checked this assumption by numerical simulations of
system (17–20).

In Figures 4a–4d we plot the population imbalance dy-
namics for atom and molecular condensates for different
values of g, and for E1 − E2 = 10. For small values of
nonlinearity the conversation to molecular condensate is
really small, and its influence to the dynamics of atom con-

densate is negligible, so its dynamics described by equa-
tions (19) satisfactorily.

We can wait the essential influence even of a small
fraction of the molecular component on the atomic con-
densate tunneling near the transition to a macroscopic
self-trapping case. The critical value of the parameter α
can be obtained from the requirement H(0) ≥ 1. Then we
find

α2nc =

[
E1z

2(0) − 2
(
1 +

√
1 − z2(0) cosφ(0)

)
E2

]
2z2(0)

.

(23)
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But near the separatrix, where MQST phenomena should
appear, the influence of even small oscillations of molecu-
lar condensate leads again to irregular, chaotic oscillation
in atomic condensate dynamics, and even more, the con-
versation rate to molecular subsystem could be enhanced,
and its dynamics also could be chaotic. If the value of
nonlinearity much more than critical value the influence
of molecular condensate to the dynamics of atomic one
becomes again negligible, and two mode approximation
works well. In Figures 4e and 4f the phase portraits are
plotted for the values of parameters corresponding to Fig-
ures 4a and 4c. The quasiperiodic dynamics for small val-
ues of nonlinearity, and chaotic motion for the values of
nonlinearity near separatrix are clearly seen from these
graphs.

So, in the nonresonant case the influence of molecular
condensate could be noticeable near the bifurcation point
of dynamical system, and at this point one should take
into account oscillations of molecular condensate, even if
they are small, because they may resonant with the oscil-
lations of atom condensate. Recently periodic oscillations
were observed in the atom number in one well [9]. For
the analysis of the dynamics in two wells we needs in the
extension of the resonance mean field theory developed
in [13] for this case (taking into account the resonance in
the pairing effect). It is subject of the future investigation.

4 Quantum dynamics of two weakly coupled
AMBEC

The analysis which performed in the previous sections is
not taking into account the influence of quantum fluctua-
tions. For this we should going beyond of the four modes
approximation. One of the possible ways is to derive the
stochastic equations for the full quantum states. For one
well case this procedure has been applied recently by [16].
Below we following to this procedure will consider quan-
tum dynamics in double-well trap potential.

The Hamiltonian operator for the system under con-
sideration, in the four mode approximation, can be written
in the following form [17,27],

Ĥ = Ĥ1 + Ĥ2 + (â+
1 â2 + â+

2 â1) + ε(b̂+1 b̂2 + b̂+2 b̂1),

Ĥi = E1âi
+âi+E2b̂i

+
b̂i+Λâi

+2âi
2+χ1(b̂i

+
âi

2+ b̂iâi
+2),
(24)

here i = 1, 2 determines the wells of the trap, âi, and
b̂i are the annihilation operators of atomic and molecular
condensate respectively.

By application of standard techniques for the Hamil-
tonian (24) we obtain the master equation for the density
matrix of the system,

∂ρ̂

∂t
= − i

�
[Ĥ, ρ̂]

which in positive P representation [34] can be converted
to the Fokker-Planck equation for the quasiprobability

distribution function P (αi, βi, γi, δi)

∂P

∂z
= i

[
∂

∂α1
(E1α1 + 2Λβ1α

2
1 + α2 + χ1γ1β1)

− ∂

∂β1
(E1β1 + 2Λα1β

2
1 + β2 + χ1δ1α1)

+
∂

∂α2
(E1α2 + 2Λβ2α

2
2 + α1 + χ1γ2β2)

− ∂

∂β2
(E1β2 + 2Λα2β

2
2 + β1 + χ1δ2α2)

− ∂

∂δ1
(E2δ1 + χ1β

2
1/2 + εδ2)

+
∂

∂γ1
(E2γ1 + χ1α

2
1/2 + εγ2)

− ∂

∂δ2
(E2α2 + χ1β

2
2/2 + εδ1)

+
∂

∂γ2
(E2γ2 + χ1α

2
2/2 + εγ1)

+
1
2
∂2

∂α2
1

(−2Λα2
1 − χ1γ1) +

1
2
∂2

∂β2
1

(2Λβ2
1 + χ1δ1)

−1
2
∂2

∂α2
2

(−2Λα2
2 + χ1γ2) +

1
2
∂2

∂β2
2

(2Λβ2
2 + χ1δ2)

]
P.

Using the Ito rules one can obtain from the Fokker-
Planck equation the Langevin stochastic equations for the
αi, βi, γi, δi variables as

dα1

dτ
= −i (E1α1 + Λβ1α

2
1 + χ1γ1β1 + α2

)

+
√
−i(Λα2

1 + χ1γ1)η1(z), (25)

dβ1

dτ
= i

(
E1β1 + Λβ2

1α1 + χ1δ1α1 + β2

)

+
√
i(Λβ2

1 + χ1δ1)η2(z), (26)

dα2

dτ
= −i (E1α2 + Λβ2α

2
2 + χ1γ2β2 + α1

)

+
√
−i(Λα2

2 + χ1γ2)η3(z), (27)

dβ2

dτ
= i

(
E1β2 + Λβ2

2α2 + β1 + χ1δ2α2 + β1

)

+
√
i(Λβ2

2 + χ1δ2)η4(z), (28)

dγ1

dτ
= −i

(
E2γ1 +

χ1

2
α2

1 + εγ2

)
, (29)

dδ1
dτ

= i
(
E2δ1 +

χ1

2
β2

1 + εδ2

)
, (30)

dγ2

dτ
= −i

(
E2γ2 +

χ1

2
α2

2 + εγ1

)
, (31)

dδ2
dτ

= i
(
E2δ2 +

χ1

2
β2

2 + εδ1

)
. (32)

In equations (25–32) we use the same normalization as
in equations (17–20). Here ηi are the independent real
Langevin sources of noise with the following nonzero cor-
relation functions:

〈η2
i 〉 = 1. (33)
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The Hamiltonian (24) takes into account only the coherent
quantum evolution of the system, and derived stochastic
equations just model the time evolution of density matrix
via master equation. We do not consider in this paper the
interaction with the reservoir and loss.

The initial conditions are deterministic for coherent
initial fields and αi(0) = αc,i, βi(0) = α∗

c,i, γi(0) = αc,i,
δi(0) = α∗

c,i, where | αc,i |2, | βc,i |2 is the initial mean
atom and molecules population in condensates. In posi-
tive P representation the quantum averages are found as
moments of the P distribution function [34] that corre-
spond to normally ordered expectation values. It should
be noted that P-positive stochastic simulations method
gives exact results for quantum system, within sampling
error, but it have well known shortage [35], namely, for
improper values of nonlinearity and calculation time in-
stability may appear during numerical solution. So, we
have to limit our calculations by small values of nonlin-
earity and evolution time, so to stop calculations before
first instability appears.

Let us now discuss the results of our numerical simu-
lations of the system of equations (25–32). The incident
fields are assumed to be in the coherent states. The fol-
lowing physical quantities have been calculated. The quan-
tum mean populations of atomic Na,i or molecular Nm,i

condensates in single modes Na,i(τ) = 〈∧a
†
i

∧
ai〉, Nm,i(τ) =

〈∧b
†
i

∧
bi〉, and variances 〈∆ ∧

X
2

1,i〉, 〈∆ ∧
X

2

2,i〉 of the quadra-

ture operators
∧
X1,i and

∧
X2,i of the single modes, where

∧
X1,i = 1

2 (
∧
ai +

∧
a
†
i ),

∧
X2,i = − i

2 (
∧
ai − ∧

a
†
i ),

∧
X3,i = 1

2 (
∧
bi +

∧
b
†
i ),

∧
X4,i = − i

2 (
∧
bi −

∧
b
†
i ).

In Figure 5 we plot the evolution of population versus
time in the first mode for the values of parameters the
same as in Figure 1, initial conditions are the coherent
state in first atomic mode αc,1 = 100, and vacuum state in
the rest αc,2 = βc,1 = βc,2 = 0. For solution of the Gross-
Pitaevskii four-mode equations we have observed in this
case, see Figure 1, the full conversion of atomic condensate
to molecular, without any oscillations in final state. When
we solve the quantum equations and calculate the mean
values, we observe oscillations in all modes, and obviously
this is the result of influence of quantum fluctuations to
unstable system. It is necessary to note that similar phe-
nomena was first noted in recent papers [16,36] for the
case of second harmonic generation and single AMBEC.
So, in quantum treatment, quantum noise induces macro-
scopic revivals in AMBEC dynamics. Also, from Figure 5
it is difficult to make some conclusion about regularity of
the observed oscillations, since the running time of simu-
lations is quite short, but at least initially the amplitudes
of excited modes dynamics do not look as strictly regular.

We also calculated the mean-field intensities for values
of parameters, that were presented for classical case. Un-
like the case when g = ε = 0, in all our calculations when
we put nonzero values for g and ε the behavior were close
to that found classically.

Fig. 5. The atom condensate (thin lines) and molecular con-
densate (thick lines) quantum mean populations Na,i and Nm,i

as a function of normalized time τ for E1 = E2 = 10, χ1 = 0.02,
ε = Λ = 0.
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Fig. 6. The first mode atom condensate quadrature variances
X1,1 as a function of normalized time τ for E1 = E2 = 0,
χ1 = 0.02, ε = 0.001, and different Λ. Λ = 0, Λ = 0.000001,
Λ = 0.00001.

Now we proceed with the calculations of the quadra-
ture variances of single modes from which we can de-
termine the possibility of squeezing for weakly coupled
AMBECs. The shot noise level is 0.25. In Figure 6 the re-
sults of our calculations in positive P are presented. The
nonclassical behavior is clearly seen. The transient, ini-
tial squeezing is observed for all calculated values of the
nonlinear parameter. In Figure 6 we show the results for
the first atomic channel where the value of squeezing are
maximal, the evolution of quadrature variances are actu-
ally very similar for all channels. The maximal squeezing
is obtained for zero value of interatomic interaction g. It
is interesting to note, that the second mode, being ini-
tially in vacuum state, also have quadrature squeezing,
so linear coupling leads to the correlations in quantum-
statistics also. And it can be immediately seen that value
of obtainable squeezing suppressed when value of nonlin-
ear interatomic interaction g increased, and monotonically
goes to zero with increasing of g. We do not observe some
critical value for g, when the squeezing become zero. In
longer times, the variances become to exceeds the shot
noise level.
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5 Conclusions

In summary, we have studied the tunneling dynamics
of atomic-molecular Bose-Einstein condensates in double-
well trap, and have shown that the tunneling rates of
the atoms and molecules depend on not only the tunnel
coupling between the atomic condensate and the molecu-
lar condensate and tunnel coupling between condensates
in different wells of the trap, but also the inter-atomic
nonlinear interactions and the initial number of atoms
in these condensates. Especially, we have shown that the
tunnel coupling and the inter-atomic nonlinear interac-
tions strongly affect the tunneling of atomic pairs in the
regime of weak tunnel coupling when the atomic conden-
sate is in a coherent and the molecular condensate in the
vacuum state. This implies that the tunneling of atomic
pairs between the atomic condensate and the molecular
condensate and between wells of the trap, can be ma-
nipulated and controlled by varying the tunnel coupling
and/or inter-atomic nonlinear interaction strengths. We
have revealed the existence of the chaotic dynamics and
MQST between the atomic condensate and the molecu-
lar condensate. The MQST is a kind of nonlinear effects
which vanishes in the absence of the inter-atomic nonlin-
ear interactions. We have shown that in some range of
parameters, quantum fluctuations can strongly affect the
quantum means dynamics and contradict with the results
obtained from solution of classical equations. The possi-
bility of quadrature squeezing is shown for coupled AM-
BEC. Namely the second mode, being initially in vacuum
state, also have quadrature squeezing, so linear tunnel cou-
pling between two AMBEC leads to the correlations in
quantum-statistics.
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